E19.2176
Simulations and Games for Education

Jan L. Plas, ECT

Overview

- Designing Simulations and Games: Cognition & Skills
 - Conceptual Design
 - Educational Objectives
 - Mechanics
 - Design Principles

Cognitive Design Factors

Cognitive Design Factors

Cognitive Design Factors

Educational Games
Presentation of a game related to today’s topic
(1 group - 5min.)
Learning from Animations and Simulations

Learning Game Design Model (Plass, 2010)

Analyse Requirements
Overall Learning Approach
- Function of Game
 - Prepare Future Learning, Teach Content, Practice Content, Teach 21st Century Skills
- General Level Designs from Learning Perspective
- Learning Progressions within Levels
- Assessment Requirements

Analyze Requirements
- Learning Objectives
- Profile of Learners
- Setting of Use (formal, informal)
- Context / Subject to be covered
- Type of knowledge desired as outcome (what test is used?)
- Competitive Projects

Overview

Designing Simulations and Games: Cognition & Skills

- Conceptual Design
 - Design Model
 - Conceptual Approach
- Educational Objectives
- Mechanics
- Design Principles

Introduction

Overview

- Educational Games

Introduction
Gaming Ideas
- Overall Conceptual Design
- Game Genre
- Essential Game Mechanics
- Essential Rules
- Incentive System (Points, Narrative, ...)
- Assessment Mechanisms

Formalize Design
- Integrate Game Design and Learning Design
- Link Game Mechanics to Educational Objectives
- Link Visual Representations to Educational Objectives
- Develop Design Document

Test Ideas
- Repeat Until <Happiness>
- Prototype
- Play Test
- Revise

Formative Evaluation
- Does the game deliver what it was meant to?
- All levels of design
- Play Test
- Outcome Assessment

Conceptual Approach
- Situated Learning Matrix–Experience (Gee, 2006)
 - Goals
 - Interpretation
 - Feedback
 - Explanation
 - Practice
 - Social Interaction

Cognitive Design Factors
- Conceptual Approach
 - Define Overall Learning Approach
Overview

- Designing Simulations and Games: Cognition & Skills
 - Conceptual Design
 - Educational Objectives
 - Higher-level objectives
 - Evidence-based Design
 - Design Principles

Cognitive Design Factors

- Higher-Level Objectives
 - State Objectives on a conceptual level
 - Based on User Analysis/Needs Assessment

Presentation

- Presentation of a game related to today’s topic
 (1 group – 5min.)
 - Learning from Animations and Simulations

Conceptual Design

- Educational Objectives

 - State Objectives on a conceptual level
 - Evidence-based Design

 - Define educational goals of game
 - Define outcomes (e.g., desired knowledge of learners)
 - Define and identify acceptable evidence for learning
 - Design activities to learn and provide evidence of learning

Cognitive Design Factors

- Evidence-based Design

 - Define educational goals of game
 - Define outcomes (e.g., desired knowledge of learners)
 - Define and identify acceptable evidence for learning
 - Design activities to learn and provide evidence of learning

Mechanics

- Learning Mechanics
- Game Mechanics
- Assessment Mechanics
Overview

- Designing Simulations and Games: Cognition & Skills
 - Conceptual Design
 - Educational Objectives
 - Mechanics
 - Design Principles
 - Cognitive Design Factors
 - Critical Elements of Game Design

Cognitive Design Factors

- Cognitive Design Factors
 - Design recommendation based on information processing and knowledge construction aspects of learning

Information Design: Representation
- Spatial, Temporal Contiguity
- Cueing, Color coding
- Iconic representations more effective, especially for learners with low prior knowledge (Plass et al., in press)
Cognitive Design Factors

Interaction Design: Exploration
- Content Manipulation: Exploratory environments more effective than worked-out examples, especially for learners with high levels of executive functions (Homer, Plass et al., in press)

Pedagogical Design
- Guidance is needed in exploratory environments (Mayer 05)
- Reflection increases comprehension
- Explanatory Feedback better than corrective feedback
- Design needs to be task-appropriate

Research Findings

Molecules & Minds (IES)

Educational Approach
- Goal: Compare Discovery Learning vs. Direct Instruction
- Participants: 93 NYC high school students, 11th grade
- Design: 2 x 2 factorial design (Icon vs. No Icon, Direct Instruction vs. Exploration)

Results:
- **Comprehension:** Simulation Exploration > Direct Instruction (d = .47) (Plass et al., 2007)
- **Transfer:** Level of executive functions moderated the treatment effect:
 - Higher levels of executive functions:
 - Exploration > Direct Instruction (d > 2.71)
 - Lower levels of executive functions:
 - Failed to reach significance (p = .087)
 - Trend: Direct Instruction > Exploration (Plass et al., 2007)
Research Findings

Simulation Efficacy
- **Results - Texas (rural)**
 - Pre-test revealed lower prior knowledge than NYC students.
 - Simulation group had increased knowledge transfer, self-efficacy, and graphing skills.
- **Results - NYC**
 - Pre-test revealed lower prior knowledge than Texas students.
 - Simulation group had increased comprehension, transfer,
 - Higher student engagement in classes using simulations.

(Lee, Plass, & Homer, 2006; Plass et al., 2009)

Factor Reactor Study (G4LI)
- **Play Mode**
 - **Results**
 - Situation Interest: Solo play was less interesting than competitive and collaborative play. No difference between 2-player modes.
 - Post-game Performance: Competitive game play resulted in better performance than solo and collaborative game play.
 - Math Fluency: Only solo play was superior to competitive play.

(Plass et al., 2010)

Representation Format
- **Results**
 - Adding icons increases comprehension, especially for learners with low prior knowledge and for complex materials.

(Lee, Plass, & Homer, 2006; Plass et al., 2009)

Molecules & Minds (IES)
- **Simulation Efficacy**
 - **Goal:** Determine efficacy of simulations integrated in high school classrooms.
 - Participants: 361 high school students (15 classrooms) in NYC,
 267 high school students (29 classrooms) in rural Texas.
 - Design: Simulation integration vs. no-simulation use (same lesson plan).
 - Data: Pre/post learning measures, video observations, observer protocols.

Research Findings

FR Play Mode
- **Results**
 - Situation Interest: Solo play was less interesting than competitive and collaborative play. No difference between 2-player modes.
 - Post-game Performance: Competitive game play resulted in better performance than solo and collaborative game play.
 - Math Fluency: Only solo play was superior to competitive play.

(Plass et al., 2010)

Cognitive Design Factors
- **How to preserve the ‘gameness’ of games**
Design your educational game! (project teams, 30-45min)

- Design your educational game from a cognitive perspective
 - Conceptual Approach
 - Higher-level Objectives
 - Desired Outcomes (learning, skills)
 - Activities/Game Mechanics
 - Consider Cognitive Design Factors and essential elements of game design