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Cognitive load research has shown that learning from worked-out examples, in comparison to
problem solving, is very effective during the initial stages of cognitive skill acquisition. In later
stages, however, solving problems is superior. In this contribution, theoretical analyses of dif-
ferent types of cognitive load and their changes over the stages of skill acquisition are presented.
Two basic arguments are put forth: (a) Intrinsic cognitive load gradually decreases so that a
gradual increase of problem-solving demands is possible without inducing cognitive overload.
(b) In contrast to the earlier stages, different learner activities during the later stages constitute
either germane or extraneous load, because different instructional goals are to be achieved.
Based on these analyses, we propose a fading procedure in which problem-solving elements are
successively integrated into example study until the learners are expected to solve problems on
their own. Empirical evidence supporting this fading procedure is provided, and future research
is proposed that focuses on how to ensure that the fading procedure is adaptive to the learners’
prior knowledge levels.

In the initial acquisition of cognitive skills in well-structured
domains such as mathematics, physics, or programming,
learning from worked-out examples is a very advantageous
way of learning. It is a learning mode preferred by novices
(e.g., LeFevre & Dixon, 1986; Recker & Pirolli, 1995), and it
is effective (for an overview, see Atkinson, Derry, Renkl, &
Wortham, 2000). While examining techniques to optimize a
3-year mathematics curriculum, Zhu and Simon (1987) found
that the entire curriculum could be taught in 2 years—without
performance deficits—by employing carefully designed and
sequenced worked-out examples. Moreover, studies con-
ducted by Sweller and his colleagues (e.g., Mwangi & Swell-
er, 1998; Sweller & Cooper, 1985) have shown that exam-

ple-based learning (with interspersed problems to be solved)
is more effective than learning only by problem solving.

However, these findings beg the following question: What
precisely does learning from worked-out examples mean? To
begin with, worked-out examples usually consist of a problem
formulation, solution steps, and the final solution itself. They
are typically employed in mathematics textbooks in the fol-
lowing fashion: (a) a principle (or a rule or a theorem) is intro-
duced, (b) a worked-out example is provided, and (c) one or
more to-be-solvedproblemsaresupplied.Althoughtextbooks
tend to use worked examples in this manner, this procedure
constituted the control conditions (problem-solving only)
rather than the worked example conditions used in studies on
the effectiveness of worked examples (e.g., Mwangi & Swell-
er, 1998; Sweller & Cooper, 1985). In contrast, when we use
the notion of “learning from worked-out examples,” this pro-
cedure indicates that the example phase is lengthened so that a
number of examples are presented before learners are ex-
pected to engage in problem solving or, alternatively, exam-
ples are interspersed with the to-be-solved problems, which is
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aneffective format (Mwangi&Sweller,1998;Sweller&Coo-
per, 1985). Thus, there is some problem solving involved in
example-based learning; however, it is delayed relative to the
more traditional problem-solving only procedure.

In later stages of skill acquisition, emphasis is on increas-
ing speed and accuracy of performance, and skills, or at least
subcomponents of them, should become automated. During
these stages, it is important that the learners actually solve
problems as opposed to studying examples. For example, it
would be difficult, if not impossible, to become a quick and
reliable programmer just by studying worked-out examples
containing codes without ever writing a program by oneself.

Although there is little doubt that worked-out examples
should be provided initially followed by to-be-solved prob-
lems to foster skill acquisition, there remain several open
questions. The first question focuses on the issue of how to
describe the theoretical status of examples and problems as
their respective functions change over the different phases of
skill acquisition proposed by cognitive theorists (e.g.,
VanLehn, 1996). Second, from an instructional point of view,
it is unclear how one should structure the transition from ex-
ample-based learning in the early stages of skill acquisition to
problem solving in the later stages.

To address these open questions, we first describe the dif-
ferent phases of skill acquisition proposed by cognitive theo-
rists. Then, we provide a brief description of the various types
of cognitive load that are related to skill acquisition followed
by a theoretical analysis of how the nature of cognitive load
changes from the intermediate to the late stage of skill acqui-
sition. This analysis is followed by the description of a re-
search-supported technique for structuring the transition
between these two stages of skill acquisition, a technique that
involves the fading of worked-out solution steps. Finally, we
conclude with an outlook on future research involving the
fading procedure.

COGNITIVE SKILL ACQUISITION

Cognitive skills refer to the learners’ capabilities to solve
problems from intellectual domains such as mathematics,
medical diagnosis, or electronic troubleshooting. Cognitive
skill acquisition is, thus, a narrower term as compared to
learning. For example, it does not include acquisition of de-
clarative knowledge for its own sake, general thinking or
learning skills, general metacognitive knowledge, and so on.
In this article, we concentrate on skill acquisition in
well-structured domains such as mathematics, physics, and
programming. In addition, the cognitive aspects of skill ac-
quisition are focused (for motivational aspects and their inter-
relation with cognitive issues see, e.g., Alexander, Jetton, &
Kulikowich, 1995).

According to a variety of researchers, the process by
which cognitive skills are acquired is usually divided into
several similar phases, albeit the specifics vary across re-
searchers (e.g., Anderson, 1983; Sweller, van Merriënboer, &

Paas, 1998; VanLehn, 1996). From an instructional point of
view, VanLehn’s (1996) definition of these phases is espe-
cially attractive because it dovetails nicely with an exam-
ple-based process of skill acquisition—a method that is, as
already mentioned, very effective.

VanLehn (1996) distinguished among early, intermediate,
and late phases of skill acquisition. During the early phase,
learners attempt to gain a basic understanding of the domain
without necessarily striving to apply the acquired knowledge.
This phase corresponds to the study of instructional materials
(typically texts) that provide knowledge about principles in
an example-based skill acquisition process. During the inter-
mediate phase, learners turn their attention to learning how to
solve problems. Specifically, learning is focused on how ab-
stract principles are used to solve concrete problems. One po-
tential outcome of this phase is that flaws in the knowledge
base—such as lack of certain elements and relations as well as
misunderstandings—are corrected. In the context of exam-
ple-based learning, persons first study a sample of examples
before turning to problem solving in this phase. Note, how-
ever, that the construction of a sound knowledge base is not a
quasi-automatic by-product of studying examples or solving
problems. In fact, learners have to actively self-explain the
solutions, that is, they have to reason about the rationale of the
solutions (Chi, Bassok, Lewis, Reimann, & Glaser, 1989;
Neuman & Schwarz, 1998; Renkl, 1997; VanLehn, 1996).
Finally, the learners enter the late stage in which speed and
accuracy are heightened by practice. During this phase, actual
problem solving, as opposed to reflective considerations such
as self-explanations, is crucial (Pirolli & Recker, 1994).

Of course, these three stages have no precise boundaries,
especially in the case of learners attempting to acquire a com-
plex cognitive skill—one that involves multiple
subcomponents. Under these circumstances, learners may be
entering the late stage in the acquisition of one of the skill’s
subcomponents while they are operating in the early or inter-
mediate phase of acquiring the skill’s other subcomponents.
Thus, learners may be simultaneously in different stages with
respect to different parts of a skill.

Returning to the two open questions outlined previ-
ously—the changing status of examples–problems over the
phases of skill acquisition and structuring the transition from
example-based learning in the early stages of skill acquisition
to problem solving in the later stages—we now turn our atten-
tion to cognitive load theory (CLT) and describe how it pro-
vides a useful framework for addressing each question. In the
following section, we outline those aspects of CLT that assist
us in addressing our open questions.

COGNITIVE LOAD THEORY

Basic Assumptions

CLT focuses on how constraints on our working memory
help determine what kinds of instruction are effective.
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Working memory is usually characterized as the part of our
cognitive architecture in which information that is undergo-
ing active processing is held. This part of our cognitive archi-
tecture is considered to have only a very limited capacity. It is
usually assumed that only about seven chunks of information
can be maintained simultaneously, maybe even less. More-
over, not only is the storage capacity limited in working mem-
ory but its ability to process information (e.g., information
that has to be compared or organized) is also restricted.
Hence, where there are multiple processing demands, work-
ing memory capacity may be limited to the simultaneous pro-
cessing of two or perhaps three chunks.

According to Baddeley (1992), working memory can be
differentiated into several interrelated structures. He asserted
that there is a central executive structure that controls infor-
mation processing within working memory. In addition, he
proposed that working memory also contains two slave sys-
tems: one subsystem for processing visual information (vi-
sual–spatial scratch pad) and another subsystem for
processing acoustic information (phonological loop). Hence,
when there are multiple processing demands, such as the si-
multaneous presentation of visual and acoustic information,
these demands can be distributed by the central executive
structure across the respective subsystems thereby helping to
maximize working memory’s capacity to store and process
information.

According to the basic tenets of CLT, one should encour-
age learning activities that minimize processing and/or stor-
age that is not directly relevant for learning to avoid taxing
working memory’s limited capacity. To capture this assertion
more precisely, three types of cognitive load need to be differ-
entiated (Sweller et al., 1998).

Intrinsic load refers to the complexity of the learning ma-
terial. More specifically, it refers to the number of elements
that the learner must attend to simultaneously to understand
the learning material. Element interactivity is high when
there are a large number of interacting elements. For exam-
ple, there is a high-intrinsic load due to high-element
interactivity when a novice student studying economics is
asked to learn about the mechanisms associated with the vi-
tality of a company’s stock because the answer is complicated
by the interaction of many factors (e.g., company’s profit, ex-
pected change in profit, inflation rates, interest rates, etc.).
Conversely, in paired-associative learning, intrinsic load is
low because a learner in this task can regard each pair inde-
pendently of the previous pair(s). Of course, the magnitude of
intrinsic load is actually dependent on a person’s level of prior
domain knowledge. High-prior knowledge allows for con-
structing larger meaningful information chunks so that cogni-
tive load is reduced. Hence, the definition of intrinsic load can
be stated more precisely: The complexity of the learning con-
tent is relative to a learner’s level of prior knowledge.

Germane load refers to demands placed on working mem-
ory capacity that are imposed by mental activities that con-
tribute directly to learning. In the case of learning from

worked-out examples, self-explanations would be considered
as germane load. Self-explanations refer to a learner’s effort
in gaining an understanding of a solution rationale, such as
trying to find communalities between two examples. Sweller
et al. (1998)—with their focus on schema construc-
tion—would have considered this germane load because the
act of self-explaining increases cognitive load but directly
contributes to schema construction. In a broader sense, how-
ever, this type of load can be considered to contribute to what-
ever is the focus of the learning task (e.g., a relation between
concepts and automation of procedures).

Extraneous load is caused by mental activities during
learning that do not contribute directly to learning. Again, as
in the case of germane load, what constitutes extraneous load
depends on the goal of the learning task. For example, when
problem-solving schemas should be acquired, extraneous
load is imposed if instructional materials contain text and
graphics that are difficult to integrate with each other. A
learner may use much of his or her cognitive capacity at-
tempting to establish some degree of coherence between the
two information sources. Consequently, little or no working
memory capacity remains for germane load, particularly if
there is also substantial intrinsic load due to the learning ma-
terial itself. In this situation, learning is likely to be minimal.

Taken together, it is important not to induce high-extrane-
ous load (i.e., load due to activities unrelated to the learning
process), especially when it is coupled with high-intrinsic
load (due to the characteristics of the material), because the
extraneous and intrinsic load may leave only a modicum or no
“room” for germane load (i.e., mental activities relevant to
learning, such as generating self-explanations). From an in-
structional perspective, it is especially important to explore
ways of specifically fostering germane load (e.g., giving
self-explanation prompts).

The Worked-Out Example Effect and its
Reversal

These assumptions of CLT are also the basis for explaining
the advantage of example-based versus traditional skill ac-
quisition procedures that we described previously. It is as-
sumed that in the beginning of a learning process, the low
level of a learner’s prior domain knowledge has two conse-
quences: (a) The learner is unable to apply domain- or
task-specific solution procedures so, instead, general prob-
lem-solving strategies must be employed; and (b) the intrinsic
load is high. In this situation, when a learner is confronted
with problem-solving demands, he or she usually adopts a
means–ends analysis strategy. This strategy demands a sub-
stantial portion of working memory capacity because the
learner has to maintain the following aspects of the problem
in his or her mind: current problem state, goal state, differ-
ences between these two states, operators that reduce the dif-
ferences between the goal state and the present state, and
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subgoals. Although means–ends analysis can be an effective
problem-solving strategy, it unfortunately does not directly
foster understanding. Hence, this strategy imposes an extra-
neous load; as a consequence, there is little or no room left for
germane load, such as generating self-explanations that
deepen the understanding of the domain. In contrast, when
studying worked-out examples, the learner is freed from per-
formance demands, and he or she can concentrate on gaining
understanding. In a recent experiment (Renkl, Gruber,
Weber, Lerche, & Schweizer, in press), this CLT explanation
for the advantage of example-based learning was directly
tested by employing a dual-task paradigm. The results of this
experiment fully supported CLT.

Although many studies have shown that it is sufficient to
reduce extraneous load by employing examples instead of
to-be-solved problems to enhance learning (for an overview,
see Sweller et al., 1998), it is nevertheless a suboptimal tech-
nique when one considers the range of individual differences
in example processing. Renkl (1997) showed that most learn-
ers do not actively self-explain the solutions of worked-out
examples; that is, they do not productively use their free cog-
nitive capacity. Furthermore, Renkl, Stark, Gruber, and
Mandl (1998) found that spontaneous self-explanations were
not as effective as self-explanations that were enhanced by a
short training period provided immediately prior to studying
examples. Thus, it is sensible to design instruction that fosters
productive self-explanation activity to ensure that the free
cognitive capacity that is available in example study is effec-
tively used.

Although examples play an important role in instructional
principles derived from CLT, it is also argued that problem
solving is superior in later phases of skill acquisition. In a re-
cent study, Kalyuga, Chandler, Tuovinen, and Sweller (2001)
analyzed mechanical trade apprentices’ learning about relay
circuits and their programming in different stages of skill ac-
quisition. Whereas in the initial phase of cognitive skill acqui-
sition, learning from worked-out examples was superior, this
advantage faded over time. In fact, the authors found that
when learners had ample experience in this domain, learning
by solving problems proved to be superior to studying exam-
ples. Hence, there was a reversal of the worked-example ef-
fect across the phases of skill acquisition (also see Kalyuga,
Ayres, Chandler, & Sweller, 2003).

This reversal effect was explained by the so-called redun-
dancy effect, one of the primary effects postulated by CLT.
Basically, it is argued that worked-out examples contain in-
formation that is easily determined by the more experienced
learners themselves and, therefore, can be considered redun-
dant. Devoting working memory to redundant information
effectively takes away a portion of the learners’ limited cog-
nitive capacity that could be devoted to germane load. More-
over, redundant information may even interfere with the
schemas constructed by experienced learners.

Our explanation of the worked-out example reversal effect
does not contradict the redundancy interpretation. It has,

however, a different focus. Whereas the redundancy explana-
tion has its focal point on what is superfluous to the learning
task (extraneous load), our account focuses on how the nature
of those aspects of the learning activity that constitute ger-
mane cognitive load changes across the different phases of
skill acquisition.

DIFFERENT TYPES OF COGNITIVE
LOAD IN DIFFERENT STAGES OF SKILL

ACQUISITION

Whether self-explanations or problem solving impose an ex-
traneous or germane cognitive load varies from the interme-
diate to the late phase of skill acquisition. In the intermediate
phase, the learners are expected to acquire an understanding
of the domain and learn how to apply domain knowledge in
solving problems. When taking into account the research on
how worked examples should be processed, it can be consid-
ered crucial that learners actively self-explain the example
solutions to themselves (Chi et al., 1989; Renkl, 1997). Ac-
tive self-explaining is especially important for learners in the
beginning of the intermediate phase because they should
learn the rationale of how to apply their basic knowledge of
the domain that they have gained in the early phase. More
specifically, the following self-explanation activities have
proven to be crucial:

1. Generation of principle-based explanations: A learner
assigns meaning to operators by identifying the underlying
domain principle, a process that, in turn, fosters a princi-
ple-based understanding of an example’s solution.

2. Explication of goal–operator combinations: A learner
assigns meaning to operators by identifying the (sub)goals
achieved by these operators, a practice that helps in identify-
ing the goal structure of certain problem types and knowledge
of relevant operators.

3. Noticing coherence: A learner perceives coherence
among examples–problems, an activity that fosters the induc-
tion of abstract schemas that enables the learner to solve iso-
morphic problems even when they contain new surface fea-
tures.

Hence, in the intermediate phase, germane load corre-
sponds to self-explanations such as principle-based explana-
tions, explication of goal–operator relations, or noticing
coherence among different examples in an effort to generalize
over surfacestructures. In the late stageof skill acquisition, the
majorgoal tobeachieved is toheightenspeedandaccuracy.At
this juncture, at least subcomponents of the skill should be au-
tomated. When automaticity is the goal, self-explanations are
not very helpful. Actually solving problems or part of them is
themajorpathbywhichspeedandaccuracycanbeenhanced.

This claim is backed up by empirical findings. For exam-
ple, Renkl (1997) found that anticipating solution steps of a
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worked-out example, which actually is solving part of the
problem, is an effective way of learning. However, this ap-
peared to hold true only when the learners had a relatively
high level of prior knowledge, that is, when they were further
advanced in the course of skill acquisition. Cooper,
Tindall-Ford, Chandler, and Sweller (2001) employed an in-
structional method in example-based learning that induced an
activity similar to anticipating. They instructed their learners
to imagine a previously learned solution path. Again, as in
Renkl’s (1997) work, they found that this “mental” problem
solving fostered learning only when the learner had a high
level of prior knowledge. Finally, Kalyuga et al.’s (2001) al-
ready mentioned results—problem solving is superior to ex-
ample study for advanced learners—are relevant in this
context as well.

In summary, when learners proceed in the course of skill
acquisition, the introduction of problem-solving elements,
such as anticipating and imagining instead of problem solv-
ing itself, is productive. When skills should be optimized (in
terms of speed and accuracy) and automated, problem solv-
ing represents germane load because it directly contributes to
these learning goals.

Taken together, it is important to note that what represents
cognitive load depends on the specific stage of skill acquisi-
tion. More specifically, in the intermediate stage self-expla-
nations constitute an important part of germane load, whereas
in the late stage problem solving represents germane load.

STRUCTURING THE TRANSITION FROM
THE INTERMEDIATE TO THE LATE

STAGE OF SKILL ACQUISITION: FADING
WORKED-OUT SOLUTION STEPS

So far, two important propositions can be derived from our
CLT assumptions: (a) Intrinsic load gradually decreases over
the course of cognitive skill acquisition so that a gradual in-
crease of problem-solving demands is possible without im-
posing an excessive load. (b) When understanding is ac-
quired, self-explanation activities become extraneous and
problem solving is germane, because speed and accuracy
should be heightened and automation should be achieved.
Hence, problem-solving elements should not be introduced
too late because example study and self-explanations are
transformed from germane to extraneous load.

Against this background, it is sensible to gradually intro-
duce problem-solving demands after the study of an initial
example. This can be accomplished in the following way.
First, a complete example is presented (model). Second, an
example is given in which one single solution step is omitted
(coached problem solving). Then, the number of blanks is in-
creased step by step until just the problem formulation is left,
that is, a to-be-solved problem (independent problem solv-
ing). In this way, a smooth transition from modeling (com-
plete example) over coached problem solving (incomplete

example) to independent problem solving is implemented.
This rationale provides one possible answer for structuring
the transition from example study to problem solving (for
very similar instructional propositions, see van Merriënboer,
Kirschner, & Kester, 2003).

An important factor that should contribute to the effective-
ness of a smooth transition (fading), as compared to the usual
example-based method of using example–problem pairs, is
that fading should reduce a heavy cognitive load and, thereby,
reduce errors during learning. Under a fading condition, the
first problem-solving demand is to generate just a single step,
and the demands are only gradually increased. When the goal
is to form rules for problem solving, instructional procedures
that reduce errors (and immediately correct them if they oc-
cur) are most appropriate (e.g., Anderson, Corbett,
Koedinger, & Pelletier, 1995). In other words, when the goal
is to learn to solve certain types of problems that can be solved
by the application of specific to-be-learned rules (near trans-
fer), reducing errors should provide an advantage.

Reducing errors is not, however, necessarily productive
when problems should be solved that require the modification
of learned solution methods (far transfer). In this case,
learned rules cannot be (directly) applied. Far transfer may be
fostered by errors that trigger reflections and thereby deepen
understanding of the domain (cf. VanLehn, 1996). From this
perspective, fading would not foster far transfer performance.
However, avoiding the demand to correct errors might reduce
the cognitive load that is imposed by problem-solving activi-
ties. Cognitive activities that contribute to a deeper under-
standing of the domain (i.e., self-explanations) might be more
likely to occur (Sweller et al., 1998). From this perspective,
fading may also foster far transfer performance.

Against this background, we clearly expected that fading
worked-out solution steps in contrast to using example–prob-
lem pairs fosters performance on near transfer problems
(known solution methods). To what extent fading is also fa-
vorable for far transfer (new solution methods) was an open
question.

As a first step in testing this fading procedure, we con-
ducted a small-scale field study in which we examined
whether a fading procedure is more effective than learning by
example–problem pairs as they are used in many studies on
learning from examples (Renkl, Atkinson, & Maier, 2000;
Renkl, Atkinson, Maier, & Staley, 2002; also see Table 1).
We compared the learning outcomes of two classrooms (n =
15 and n = 20) from a German Hauptschule (i.e., the lowest
track of the German three-track system). In each classroom, a
physics lesson (electricity) was conducted in which exam-
ple–problem pairs or fading examples were employed, re-
spectively. In the fading group, the first task was a completely
worked-out example. In the second task, the last solution step
was omitted. In the third task, the last two steps were omitted
(backward fading of solution steps). Finally, all three steps
were left out so that a to-be-solved problem was presented to
the learners. In a posttest presented 2 days after the lessons,
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the fading group outperformed the example–problem pairs
group significantly in near transfer performance but not (sig-
nificantly) on far transfer (see Table 1). Based on this encour-
aging result, we conducted two more controlled laboratory
experiments to examine the efficacy of a fading procedure
relative to learning by example–problem pairs.

In an initial laboratory experiment, 54 American psy-
chology students at a large, southeastern university partici-
pated (Renkl et al., 2000; Renkl et al., 2002). They were
randomly assigned to the fading or the example–problem
condition (n = 27 in each group). Two sets of four exam-
ples–problems from probability calculation were used, with
the examples and problems each consisting of exactly three
steps. In this study, we employed a forward-fading proce-
dure (i.e., omitting the first solution step first, then the sec-
ond, etc.).

We found that the fading procedure clearly fostered near
but not far transfer performance. The effect on near transfer
was mediated by the lower number of errors committed dur-
ing the learning phase (see Table 1).

In this laboratory experiment, we conceptually replicated
the effectiveness of our fading procedure for near transfer.
We obtained this converging result even though this study
and our first investigation differed with respect to the type of
learners (low-track students vs. university students), the
learning domain (physics/electricity vs. mathematics/proba-
bility calculation), the learning setting (school lesson vs.
computer-based learning in the laboratory), and the kind of
fading out worked-out solution steps (backward vs. forward).
We interpreted the stability of this finding as an indicator that
our fading procedure is reliable and stable despite these very
different context conditions.

A caveat remained, however. Because a conceptual repli-
cation is not the same as a direct empirical replication, there
remained at least some uncertainty whether a direct replica-
tion of the findings would also succeed. In addition, an open
question arose from the fact that we employed two ways of

fading out worked-out solution steps, a backward and for-
ward procedure, across the two experiments. As the context
conditions in our two studies varied substantially, we could
not compare the relative effectiveness of these two proce-
dures. This comparison was necessary to answer the ques-
tions whether the specific type of fading procedure
significantly influences learning outcomes or whether it is of
minor importance.

To replicate directly the findings of the previous experi-
ment, identical conditions (example–problem pairs and
forward fading) were implemented in our second labora-
tory experiment (see Table 1). In addition, we employed
the condition of backward fading in an effort to examine
potential differences between the two types of fading. The
participants for this study were 45 American students en-
rolled in several educational psychology courses at a small,
northeastern liberal arts college. They were randomly as-
signed in equal numbers to the forward fading, backward
fading, or to the example–problem condition (n = 15 in
each group).

The positive effect of fading on near transfer was repli-
cated. This effect was again mediated by reduced prob-
lem-solving errors during learning. In contrast to our
previous studies, we found also a positive effect on far trans-
fer. The statistically significant effect on far transfer was,
however, primarily due to the backward-fading condition.
Beyond the question of far transfer effects following back-
ward fading, this type of fading procedure was more favor-
able as compared to forward fading because it was more
efficient. The learners in the backward-fading condition
spent less time on the examples without disadvantages in
transfer performance (see Table 1).

From a cognitive load perspective, the backward-fading
condition may be more favorable because the first prob-
lem-solving demand is imposed later as compared with for-
ward fading. In the latter condition, the first to-be-determined
step might come before the learner has gained an understand-
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TABLE 1
Overview of the Empirical Studies on Fading Worked-Out Solution Steps

Study Sample Learning Domain Experimental Comparisons
Statistically Significant

Fading Effects (Effect Size) Additional Findings

Quasi-experimental
field study on fading

n = 35, German low-track
students, 9th grade

Physics/electricity Example–problem pairs
versus backward fading

Near transfer: η2 = .12

First lab experiment on
fading

n = 54, American psy-
chology students

Mathematics/
probability

Example–problem pairs ver-
sus forward fading

Near transfer: η2 = .08 Near transfer effect: Me-
diation by reduction of
errors during learning

Second lab experiment
on fading

n = 45, American psy-
chology students

Mathematics/
probability

Example–problem pairs ver-
sus backward fading and
forward fading

Near transfer: η2 = .19; far
transfer: η2 = .12

Near transfer effect: Me-
diation by reduction of
errors during learning

Forward fading versus back-
ward fading

Backward fading, less
learning time: η2 = .23

Lab experiment on
fading + prompting

n = 28, American psy-
chology students

Mathematics/
probability

Backward fading without
prompting versus backward
fading with prompting

Near transfer: η2 = .18; far
transfer: η2 = .23



ing of the step’s solution, so that solving the step may impose
a heavy cognitive load.

To optimize our fading procedure, in a subsequent labora-
tory experiment we introduced some self-explanation
prompting at the faded steps (Renkl & Atkinson, 2001; also
see Table 1). The advantage of worked-out steps is that the
learners have enough cognitive capacity left for self-explana-
tion. However, many learners do not effectively use their free
capacity; they do not spontaneously provide fruitful self-ex-
planations (Renkl, 1997). The learners’ suboptimal self-ex-
planation activities may also be a reason for the somewhat
fixed effects of our fading procedure on far transfer in the pre-
vious experiments.

We assumed that prompting for self-explanations at the
worked-out steps (not at the to-be-determined steps) renders
our fading procedure more effective, especially with respect
to far transfer. More specifically, we again used probability
examples (and problems) and asked the learners to determine
at each worked-out step which probability rule was applied.
In an experiment, we compared two backward-fading groups
with and without self-explanation prompts (n = 14 in each
group). We found a strong effect on near transfer and on far
transfer in favor of the prompting group (see Table 1). Thus,
we showed that employing instructional means to use free
cognitive capacity effectively is of major importance.

With respect to research on example-based learning, our
four experiments provided the following contributions: (a)
A new feature for the design of materials for example-based
learning—fading—was introduced that builds a bridge be-
tween studying examples in the intermediate phase of cog-
nitive skill acquisition and problem solving in the late stage.
(b) In particular, fading as a feature of example-based learn-
ing appears to be effective, at least with respect to near
transfer. The finding was replicated and shown to be stable
across context variables, such as field versus laboratory
studies. (c) The number of problem-solving errors plays a
role in mediating the effects of fading on near transfer. (d)
It is more favorable to fade out worked-out solution steps in
a backward manner as compared with a forward manner. (e)
Enriching the fading procedure with self-explanation
prompting at the worked-out steps fostered not only near
transfer but also far transfer.

What do these results tell us about CLT? In our view, there
are three main implications: (a) The positive effects of fading
on learning outcomes clearly confirm the expertise reversal
effect that is postulated in the most recent version of CLT (see
Kalyuga et al., 2003). From an instructional point of view, the
reversal effect means that after a phase of example study
problems to-be-solved should be provided. Our research indi-
cates how to structure the transition between example study
and problem solving. (b) Our analysis of which activities in-
duce extraneous or germane load and the corresponding re-
sults imply that careful attention has to be devoted to the
questions of what the specific learning goal is that is actually
pursued (also see Gerjets & Scheiter, 2003). More precisely

defined goals than schema construction and schema automa-
tion (the learning goals presently emphasized in CLT) are of
special importance when instructional procedures should be
employed to foster germane load. These procedures can only
be tailored appropriately when the learning goal is precisely
defined. In our case, research on example-based learning was
a supplement to CLT in defining the prompts employed in our
prompting experiment. (c) The results of our prompting ex-
periment in particular show that merely reducing extraneous
load—which is often the focus of CLT—is suboptimal. More
attention should be paid to fostering germane load in future
versions of CLT.

FUTURE DIRECTIONS

Although our fading procedure is a sensible method, it can be
improved. We argued that, when acquiring a complex skill, a
learner may be in the intermediate stage with respect to some
subcomponents (i.e., when they still need to be understood),
and he or she may be in the late stage with respect to some
other subcomponents (i.e., understanding is already reached).
From an instructional perspective, it would be optimal to
elicit some example study with self-explanations for the for-
mer subcomponents and some problem solving for the latter
ones. However, the fading procedure used here is not adap-
tive to an individual learner’s level of understanding of differ-
ent subcomponents. As it is presently structured, the prob-
lem-solving demands gradually increase for a prototypical
learner. Individual differences in knowledge levels are not
considered.

To address this instructional challenge in the future, we
intend to examine the effectiveness of two approaches to
adapting to a learner’s level of prior knowledge: (a) exter-
nally determined adaptation, and (b) internally determined
adaptation. In the case of externally determined adaptation,
the learning environment will be designed to diagnose
which steps a learner (probably) can or cannot already solve
on his or her own. The environment would then provide
worked-out solutions for steps that the learner is unable to
solve unaided and then fade the steps that the learner is
likely to be able to solve on his or her own. In contrast, in-
ternally determined adaptation will involve training a
learner how to engage in productive self-explanation activi-
ties. For instance, the learner would be instructed to gener-
ate principle-based explanations and engage in the
explication of goal–operator combinations while examining
the initial example provided in an instructional sequence.
With the subsequent examples, the learner would be in-
structed to first try to anticipate the step and, if this is not
possible, to look up the worked-out step and to self-explain
by principle-based explanations and explication of goal–op-
erator combinations. Future studies will investigate the fea-
sibility of both forms of adaptation.
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